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Abstract

In this paper, a class of fractional order nonlinear differential equations with boundary con-
ditions is studied. We employ Sinc-Galerkin method to obtain the approximate solution for
investigated fractional boundary value problems. A local derivative so called beta-derivative
definition is preferred for fractional order. In order to illustrate the efficiency of the proposed
method on investigated class of functions, two examples with numerical simulations are tested.
The error estimation shows that Sinc-Galerkin method is a consistent and effective method.
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1 Introduction

In recent years numerical solutions of fractional differential equations with local derivative defini-
tions gain popularity in the literature. That is mostly due to some advantages of local derivatives
such as satisfying many properties which causes limitations for the fractional derivatives having
memory effect. Some articles have been focused on analytical or numerical solutions of the frac-
tional differential equations involving beta-derivatives. In [8] authors obtained new optical soliton
solutions for CLL equation with beta derivative in optical fibers. The exact analytical solutions
of nonlinear Schr odinger equation (NLSE) with the beta-derivative are constructed in [9] by using
sub-equation method. In [10], the authors focus on exact solutions of a biological population model
namely, the DNA Peyrard-Bishop dynamic equation involving beta-derivative by using three dif-
ferent methods. More applications of beta-derivative can be found in [2, 3, 5, 6, 11, 12].
In this study, we use the sinc-Galerkin method that has almost not been developed for the class of
fractional nonlinear differential equations in the form

L[y(x)] = y′′(x) + p(x)y′(x) + q(x)y(x) + n(x)ysy(β) = f(x), 0 < β ≤ 1 (1.1)

subject to homogeneous boundary conditions

y(a) = 0, y(b) = 0 (1.2)

where beta denotes beta derivative defined in [1]. We refer interested reader to [14, 15, 16] and
references therein for details on sinc-Galerkin method.

The structure of the paper is organized as follows. In the following section some basic definitions
are given. In the third section main theorems for the function approximation to (1.1) based on the
sinc-Galerkin method are given. Then in Section 4 error estimation is given. In Section 5 proposed
method is illustrated with numerical examples. Finally, in the last section the paper is concluded.
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2 Preliminaries and notation

In this section, some preliminaries and notations related to sinc basic functions and beta-derivative
are given. The definition of beta-derivative is as follows:

Definition 2.1. Let f be a function, such that, f : [a,∞)→ R. Then the beta-derivative is defined
as:

Dβ
x(f(x)) = lim

ε→0

f
(
x+ ε

(
x+ 1

Γ(β)

)1−β)− f(x)

ε

for all x ≥ a, β in (0, 1]. Then is the limit of the above exists, f is says to be beta-differentiable.

Theorem 2.2. Asuming that f : [a,∞)→ R, be a functions such that, f is differentiable and also
alpha-differentiable. Let g be a function defined in the range of f and also differentiable, then we
have the following rule:

Dβ
x(g ◦ f(x)) =

(
x+

1

Γ(β)

)1−β
f ′(x)g′(f(x))

Definition 2.3. The sinc function is defined on the whole real line −∞ < x <∞ by

sinc(x) =

{
sin(πx)
πx x 6= 0

1 x = 0.

Definition 2.4. For h > 0 and k = 0,±1,±2, ... the translated sinc functions with space node are
given by:

S(k, h)(x) = sinc
(x− kh

h

)
=

 sin
(
π x−khh

)
π x−khh

x 6= kh

1 x = kh.

Definition 2.5. If f(x) is defined on the real line, then for h > 0 the series

C(f, h)(x) =
∞∑

k=−∞

f(kh)sinc
(x− kh

h

)
is called the Whittaker cardinal expansion of f whenever this series converges.

In general, approximations can be constructed for infinite, semi-infinite and finite intervals. To
construct an approximation on the interval (a, b), the conformal map

ϕ(z) = ln
(z − a
b− z

)
is employed. The basis functions on the interval (a, b) are derived from the composite translated
sinc functions

Sk(z) = S(k, h)(z) ◦ ϕ(z) = sinc
(ϕ(z)− kh

h

)
.

The inverse map of w = ϕ(z) is

z = ϕ−1(w) =
a+ bew

1 + ew
.



Numerical solutions of a class of NFBVPs with beta derivative 97

The sinc grid points zk ∈ (a, b) in DE will be denoted by xk because they are real. For the evenly
spaced nodes {kh}∞k=−∞ on the real line, the image which corresponds to these nodes is denoted
by

xk = ϕ−1(kh) =
a+ bekh

1 + ekh
, k = 0,±1,±2, ...

Theorem 2.6. Let Γ be (0, 1), F ∈ B(DE), then for h > 0 sufficiently small,∫
Γ

F (z)dz − h
∞∑

j=−∞

F (zj)

ϕ′(zj)
=
i

2

∫
∂D

F (z)k(ϕ, h)(z)

sin(πϕ(z)/h)
dz ≡ IF (2.1)

where

|k(ϕ, h)|z∈∂D =
∣∣∣e[ iπϕ(z)

h sgn(Imϕ(z))
]∣∣∣
z∈∂D

= e
−πd
h .

For the sinc-Galerkin method, the infinite quadrature rule must be truncated to a finite sum.
The following theorem indicates the conditions under which an exponential convergence results.

Theorem 2.7. If there exist positive constants α, β and C such that∣∣∣ F (x)

ϕ′(x)

∣∣∣ ≤ C { e−α|ϕ(x)| x ∈ ψ((−∞,∞))
e−β|ϕ(x)| x ∈ ψ((0,∞)).

(2.2)

then the error bound for the quadrature rule (2.1) is

∣∣∣ ∫
Γ

F (x)dx− h
N∑

j=−M

F (xj)

ϕ′(xj)

∣∣∣ ≤ C(e−αMh

α
+
e−βNh

β

)
+ |IF | (2.3)

The infinite sum in (2.1) is truncated with the use of (2.2) to arrive at the inequality (2.3).
Making the selections

h =

√
πd

αM

and

N ≡
[⌊αM

β
+ 1
⌋]

where [b.c] is the integer part of the statement and M is the integer value which specifies the grid
size, then ∫

Γ

F (x)dx = h

N∑
j=−M

F (xj)

ϕ′(xj)
+O

(
e−(παdM)1/2

)
. (2.4)

These theorems are used for the integrals in the inner products that arise from the method presented
here.
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3 The sinc-Galerkin method

An approximate solution of y(x) in (1.1) is represented by the formula

yn(x) =

N∑
k=−M

ckSk(x), n = M +N + 1 (3.1)

where Sk is function S(k, h) ◦ ϕ(x) for some fixed step size h. The unknown coefficients ck in (3.1)
are determined by orthogonalization of the residual with respect to the basis functions, i.e.

〈y′′, Sk〉+ 〈p(x)y′, Sk〉+ 〈q(x)y, Sk〉+ 〈n(x)ysy(β), Sk〉 = 〈f(x), Sk〉, k = −M, . . . , N (3.2)

The inner product used for the sinc-Galerkin method is defined by

〈f, g〉 =

∫ b

a

f(x)g(x)w(x)dx

where w(x) a weight function which is taken for second-order boundary value problems in the
following form

w(x) =
1

ϕ′(x)
.

We need the following theorems for the approximation of inner products in (3.2).

Theorem 3.1. The following relations hold:

〈y′′, Sk〉 ≈ h
N∑

j=−M

2∑
i=0

y(xj)

ϕ′(xj)hi
δ

(i)
kj g2,i(xj) (3.3)

〈p(x)y′, Sk〉 ≈ −h
N∑

j=−M

1∑
i=0

y(xj)

ϕ′(xj)hi
δ

(i)
kj g1,i(xj) (3.4)

and for G(x) = q(x)y(x) and G(x) = f(x)

〈G,Sk〉 ≈ h
G(xk)w(xk)

ϕ′(xk)
(3.5)

The proof of this theorem and values of gk,i(x) can be found in [14].

Theorem 3.2. The following relation holds:

〈n(x)ysy(β), Sk〉 ≈

− h

s+ 1

N∑
j=−M

ys+1(xj)

ϕ′(xj)

[ 1

h
δ

(1)
kj (ϕ′nw(x+

1

Γ(β)
)1−β)(xj) + δ

(0)
kj (nw(x+

1

Γ(β)
)1−β)′(xj)

]
(3.6)
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Proof. For n(x)ysy(β), the inner product with sinc basis elements is given by

〈n(x)ysy(β), Sk〉 =

∫ b

a

ys(x+
1

Γ(β)
)1−β)y′(Sknw)dx.

Integrating by parts to remove the first derivative from the dependent variable y leads to the
equality

〈n(x)ysy(β), Sk〉 = B − 1

s+ 1

∫ b

a

ys+1(Sknw(x+
1

Γ(β)
)1−β)′dx, (3.7)

where the boundary term is

B =
[ 1

s+ 1
(ys+1Sknw(x+

1

Γ(β)
)1−β)

]b
x=a

= 0,

and expanding the derivatives under the integral in (3.7) yields

〈n(x)ysy(β), Sk〉 = − 1

s+ 1

∫ b

a

ys+1
[
S

(1)
k ϕ′(nw(x+

1

Γ(β)
)1−β) + S

(0)
k (nw(x+

1

Γ(β)
)1−β)′

]
dx. (3.8)

Applying the sinc quadrature rule given by (2.4) to the right-hand side of (3.8) and deleting the
error term yields (3.6). q.e.d.

Replacing each term of (3.2) with the approximations defined in (3.3)-(3.6), respectively, and
replacing y(xj) by cj , and dividing by h, we obtain the following theorem:

Theorem 3.3. If the assumed approximate solution of the boundary-value problem (1.1) is (3.1),
then the discrete sinc-Galerkin system for the determination of the unknown coefficients {cj}Nj=−M
is given, for k = −M, . . . , N , by

N∑
j=−M

{
2∑
i=0

1

hi
δ

(i)
kj

g2,i(xj)

ϕ′(xj)
cj −

1∑
i=0

1

hi
δ

(i)
kj

g1,i(xj)

ϕ′(xj)
cj −

1

s+ 1

[ 1

h
δ

(1)
kj (nw(x+

1

Γ(β)
)1−β)(xj)c

s+1
j

+
(nw(x+ 1

Γ(β) )1−β)′(xk)

ϕ′(xk)
cs+1
k

]}
+
µ0(xk)w(xk)

ϕ′(xk)
ck =

f(xk)w(xk)

ϕ′(xk)
(3.9)

Now we define some notation to represent the system (3.9) in matrix-vector form. Let D(y) de-
note a diagonal matrix whose diagonal elements are y(x−M ), y(x−M+1), ..., y(xN ) and non-diagonal
elements are zero; also for 0 ≤ i ≤ 2, let I(i) denote the matrices

I(i) = [δ
(i)
jk ], j, k = −M, . . . , N.

where I and D are square matrices of dimension n×n. In order to calculate the unknown coefficients
ck in the nonlinear system (3.9), we rewrite this system using the above notations in matrix-vector
form as

AC + BCs = F (3.10)
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where

A =

2∑
j=0

1

hj
I(j)D

(
g2,j

ϕ′

)
−

1∑
j=0

1

hj
I(j)D

(
g1,j

ϕ′

)
+ I(0)D

(
g0,0

ϕ′

)

B = − 1

s+ 1

[
1

h
I(1)D

(
nw(x+

1

Γ(β)
)1−β

)
+ I(0)D

(
(nw(x+ 1

Γ(β) )1−β)′

ϕ′

)]

F = D

(
wf

ϕ′

)
1

Cj =
(
cj−M , c

j
−M+1, . . . , c

j
N−1, c

j
N

)T
, j = 1, s.

Now we have a nonlinear system of n equations in n unknown coefficients given by (3.10). Solving
by Newton’s method, we can obtain the unknown coefficients ck that are necessary for approximating
the solution in (3.1).

4 Error estimation

In this section, we define two error functions that are actual error function EN (x) and estimate
error function ẼN (x) to check the accuracy of the presented method. Actual error function EN (x)
is used in the problems that are known the exact solutions and it is defined by

EN (x) = |yN (x)− y(x)| (4.1)

where y(x) is the exact solution of Equation (1.1). The estimate error function ẼN (x) might be
used in the problems that are unknown the exact solutions. If the yN (x) is an approximate solution
to Equation (1.1), then when these functions and their derivatives are substituted into Equation
(1.1) the obtained equation should be satisfied approximately. In short, for xk ∈ [a, b], the function
ẼN (x) is defined by

ẼN (xk) = |L[yN (xk)]− f(xk)| ∼= 0 (4.2)

and ẼN ≤ 10−tk (tk any positive contant). If max10−tk = 10−t is prescribed, the truncation limit
N is increased until the difference ẼN (xk) at each of the points becomes smaller than the prescribed
10−t [13].

5 Computational examples

In this section, two numerical examples are presented to show the accuracy of the present method.
In the first example, a problem that has the known exact solution is selected. On this problem, the
present method is tested via the error functions given by (4.1) and (4.2). In the second example, a
singular problem that has the known exact solution for integer order derivative case is considered.
So, the example is only tested via the error function given by (4.2). In the both examples, N = M
and h = π/

√
2N is taken and the obtained results are illustrated via tables and graphics at selected

points in the interval (a, b).
Example 1. Consider the following nonlinear fractional boundary value problem

y′′(x) + xy′(x) + x3y4(x)y(0.5)(x) = f(x) (5.1)
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Table 1: Numerical values of the error function EN for Example 1 for different values of N

x E16 E32 E64 E128

0.2 1.963× 10−5 5.729× 10−7 3.480× 10−9 2.374× 10−12

0.4 3.890× 10−5 1.124× 10−6 6.826× 10−9 4.656× 10−12

0.6 5.627× 10−5 1.632× 10−6 9.909× 10−9 6.764× 10−12

0.8 7.193× 10−5 2.082× 10−6 1.265× 10−8 8.634× 10−12

Table 2: Numerical values of the error function ẼN for Example 1 for different values of N

x Ẽ16 Ẽ32 Ẽ64 Ẽ128

0.2 1.603× 10−4 1.038× 10−6 6.317× 10−10 6.554× 10−13

0.4 2.095× 10−4 1.392× 10−6 5.639× 10−9 1.663× 10−12

0.6 1.581× 10−4 8.781× 10−7 5.740× 10−9 6.590× 10−12

0.8 3.614× 10−4 3.815× 10−6 3.687× 10−10 6.227× 10−12

subject to the homogeneous boundary conditions

y(0) = 0, y(1) = 0

where
f(x) = x(6− 12x− 3(x− 1)x2 − x3 − (x− 1)4x16(x+ 1/Γ(0.5))0.5(4x− 3)).

The exact solution of Eq.(5.1) is given by y(x) = x3(1 − x). Table 1 presents numerical values of
the actual error functions obtained for Eq.(5.1) when N = 16, 32, 64 and 128. Similarly, in Table
2, numerical values of the estimated error functions obtained for Eq.(5.1) when N = 16, 32, 64 and
128 are presented. In Figure 1, it is given that graphics of exact solution and approximate solution
obtained by the present method in the interval (0, 1) for N = 4, 16 and 64. In the interval (0.2, 0.8),
Figure 2 presents graphics of the estimated error functions for N = 4, 16 and 64. The presented
tables and figures show that the approximate solutions converge the exact ones when it is increased
that the number of sinc grid points N .
Example 2. Consider the nonlinear singular boundary value problem

y′′(x)− 1

x
y′(x) +

1

x(x− 1)
y3(x)y(β)(x)− 1

x− 1
y(x) = f(x) (5.2)

subject to the homogeneous boundary conditions

y(0) = 0, y(1) = 0

where

f(x) = π cos(πx)− sin(πx)

x
− π2x sin(πx)− x(sinπx)

x− 1
+
πx3 cos(πx)(sin(πx))3

x− 1
+
x2(sin(πx))4

x− 1
.
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(a) N = 4 (b) N = 16

(c) N = 64

Figure 1: Graphics of exact and approximate solutions for Example 1 when N = 4, 16, 64.
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(a) Ẽ4 (b) Ẽ16

(c) Ẽ64

Figure 2: Graphics of the error function ẼN for Example 1 when N = 4, 16, 64.
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Table 3: Numerical results for different values of β when N = 128 for Example 2

x β = 0.1 β = 0.5 β = 0.9 β = 1

0.2 0.119230 0.117859 0.117525 0.117557
0.4 0.386105 0.381504 0.380330 0.380423
0.6 0.576963 0.573097 0.570897 0.570634
0.8 0.473469 0.474663 0.471291 0.470228

Table 4: Numerical values of ẼN for different values of N when β = 0.5 in Example 2

x Ẽ16 Ẽ32 Ẽ64 Ẽ128

0.2 2.076× 10−2 4.206× 10−4 2.118× 10−6 2.841× 10−10

0.4 1.457× 10−2 2.468× 10−4 4.545× 10−7 1.065× 10−10

0.6 1.083× 10−2 1.697× 10−4 9.739× 10−7 1.622× 10−10

0.8 1.434× 10−2 6.990× 10−4 3.477× 10−7 2.137× 10−10

The exact solution of Eq.(5.2) for β = 1 is y(x) = x sinπx. Table 3 presents numerical values
obtained by different values of β for Eq.(5.2) when N = 128. Similarly, in Table 4, numerical
results of the estimated error functions obtained for β = 0.5 when N = 16, 32, 64 and 128 are
presented. In Figure 3, it is given that graphics of approximate solutions obtained by the present
method for β = 0.1, 0.5, 0.9, 1 in the interval (0.4, 0.41) when N = 128. In the interval (0.2, 0.8),
Figure 4 presents graphics of the estimated error functions for N = 4, 16 and 64. The presented
tables and figures show that the approximate solutions converge the exact ones when it is increased
that the number of sinc grid points N .
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Figure 3: The zoomed graphics of approximate solutions for different values of β in Example 2
when N = 128

Figure 4: The graphics of the estimated error functions ẼN for β = 0.3 in Example 2 when
N = 4, 16, 64
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6 Conclusion

In this research, sinc-Galerkin method is applied to obtain the approximate solutions of a class of
fractional nonlinear differential equations (1.1). In order to illustrate the accuracy of the presented
method, the numerical results obtained from various levels of iterations are compared with exact
solutions. As a result of those comparisons, it is clear that sinc-Galerkin method provides a good
approximation and shows promise for solving different types of fractional nonlinear differential
equations. In addition to the results of comparison, the error estimation guarantees the efficiency
of the proposed method.
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